Перевод: со всех языков на все языки

со всех языков на все языки

John is my age

  • 1 ♦ age

    ♦ age /eɪdʒ/
    n.
    1 [cu] età; anni (pl.) ( di vita): age of retirement, età pensionabile; age gap, differenza di età; She's 30 years of age, ha trent'anni (di età); John is my age, John ha la mia stessa età; a man of middle age, un uomo di mezza età; at the age of 42, all'età di 42 anni; a 42 anni d'età; at an early age, in giovane età; age range, fascia d'età; age limit, limite d'età; in our old age, da vecchi; quando saremo vecchi; ora che siamo vecchi; to feel one's age, sentire l'età (o il peso degli anni); under age (pred.), under-age (agg.), minorenne; What age are you?, quanti anni hai?; che età hai?
    2 età; epoca; periodo; evo; era: the Stone Age, l'età della pietra; the Victorian Age, il periodo vittoriano; our age, il nostro tempo; la nostra epoca; through the ages, attraverso i secoli
    3 [u] vecchiaia: the weakness of age, la debolezza della vecchiaia
    4 (al pl.) (fam.) secoli; un secolo; un sacco di tempo; un'eternità: DIALOGO → - Hearing from an old friend- I haven't heard from you in ages, sono secoli che non ti sento; It went on for ages, è durato un'eternità; ages ago, un secolo fa; DIALOGO → - Coursework- I thought we had ages to do the essay, pensavo di avere un sacco di tempo per fare il tema
    ● (stat.) age bracket, fascia d'età □ (demogr.) age distribution, distribuzione per età □ age group, gruppo di coetanei; classe; (stat.) gruppo d'età □ (metall.) age hardening, aumento di durezza causato dall'invecchiamento □ age-long, che esiste (o che dura) da molto tempo; lungo; antico □ (leg.) age of consent, età a cui si può consentire legalmente a rapporti sessuali □ age of discretion, l'età della ragione □ age-old, vecchissimo; secolare; ( di problema, ecc.) annoso □ age-related, legato all'età; dovuto all'età □ (leg.) to be of age, essere maggiorenne □ to be of an age, essere coetanei; avere la stessa età □ to be of an age to do st., avere l'età per fare qc. to be over-age, avere superato i limiti d'età □ (leg.) to come of age, diventare maggiorenne □ (leg.) full age, maggiore età □ the golden age, (mitol.) l'età dell'oro; (fig.) periodo aureo ( di un paese, ecc.) □ to look one's age, dimostrare la propria età □ (fam.) ripe old age, veneranda età □ (scherz.) Age before beauty!, prima i più vecchi! ( invito ironico a passare per primi) □ (fam.) Be (o Act) your age!, non fare il bambino!
    (to) age /eɪdʒ/
    A v. i.
    1 invecchiare: He has aged a lot, è molto invecchiato
    2 invecchiare; stagionare: Our wine ages in casks, il nostro vino invecchia in fusti
    B v. t.
    1 invecchiare; far sembrare più vecchio
    2 far invecchiare; far stagionare

    English-Italian dictionary > ♦ age

  • 2 John

    1) Общая лексика: Джон, Иван, Йон
    2) Разговорное выражение: сортир
    3) Религия: От Иоанна святое благовествование, (An apostle who according to various Christian traditions wrote the fourth Gospel, the three Johannine Epistles, and the Book of Revelation) Иоанн Богослов (апостол от Двенадцати, евангелист), (Antipope during January 844. He was saved from being murdered by the noble faction through the intervention of Sergius II, consecrated Pope at St. Peter's without imperial sanction, who then imprisoned him in a monastery) антипапа Иоанн, (Any of three short didactic letters addressed to early Christians and included in the New Testament) Первое, Второе или Третье соборное послание св. апостола Иоанна Богослова, (One of the most popular Popes of all times - reigned 1958-63- who inaugurated a new era in the history of the Roman Catholic Church by his openness to change, shown especially in his convoking of the second Vatican Council) Иоанн XXIII, (Pope from 1276 to 1277, one of the most scholarly pontiffs in papal history) Иоанн XXI, (Pope from 523 to 526 who ended the Acacian Schism - 484-519 - thus reuniting the Eastern and Western churches by restoring peace between the papacy and the Byzantine emperor Justin I) Иоанн I, (Pope from 533 to 535 and the first pontiff to change his original name, which he considered pagan) Иоанн II, (Pope from 701 to 705. In his only extant letter, John ordered the restoration of the deposed bishop St. Wilfrid of York) Иоанн VI, (Pope from 705 to 707 who was noted for his devotion to the Virgin Mary and for his energetic restoration of Roman churches) Иоанн VII, (Pope from 898 to 900. His councils made compulsory the presence of an imperial emissary at papal elections) Иоанн IX, (Pope from 914 to 928 who approved the severe rule of the newly founded Benedictine order of Cluny) Иоанн X, (Pope from 931 to about 935, the son of Marozia, dominant lady of the Roman Crescentii family. In 932/933 he was confined by his half-brother Alberic II to the Lateran and remained a prisoner until his death) Иоанн XI, (Pope from 955 to 964 who was elected when he was only about 18 years of age) Иоанн XII, (Pope from 965 to 972. His alliance with the imperial family made his pontificate peaceful) Иоанн XIII, (Pope from 983 to 984. His sole extant document is a letter to Archbishop Alo of Benevento, Italy, concerning church reform) Иоанн XIV, (Pope from July 23, 685, to August 2, 686. A man of learning and generosity, he made liberal donations for the poor) Иоанн V, (Second Avignon Pope - reigned 1316-34 - who centralized church administration, condemned the Spiritual Franciscans, and, against Emperor Louis IV, upheld papal authority over imperial elections) Иоанн XXII, (The fourth Gospel in the NewTestament) Евангелие от Иоанна, (XXIII)(Schismatic antipope from 1410 to 1415) Иоанн (XXIII)
    7) Имена и фамилии: Джон (имя) (100%)

    Универсальный англо-русский словарь > John

  • 3 john

    1) Общая лексика: Джон, Иван, Йон
    2) Разговорное выражение: сортир
    3) Религия: От Иоанна святое благовествование, (An apostle who according to various Christian traditions wrote the fourth Gospel, the three Johannine Epistles, and the Book of Revelation) Иоанн Богослов (апостол от Двенадцати, евангелист), (Antipope during January 844. He was saved from being murdered by the noble faction through the intervention of Sergius II, consecrated Pope at St. Peter's without imperial sanction, who then imprisoned him in a monastery) антипапа Иоанн, (Any of three short didactic letters addressed to early Christians and included in the New Testament) Первое, Второе или Третье соборное послание св. апостола Иоанна Богослова, (One of the most popular Popes of all times - reigned 1958-63- who inaugurated a new era in the history of the Roman Catholic Church by his openness to change, shown especially in his convoking of the second Vatican Council) Иоанн XXIII, (Pope from 1276 to 1277, one of the most scholarly pontiffs in papal history) Иоанн XXI, (Pope from 523 to 526 who ended the Acacian Schism - 484-519 - thus reuniting the Eastern and Western churches by restoring peace between the papacy and the Byzantine emperor Justin I) Иоанн I, (Pope from 533 to 535 and the first pontiff to change his original name, which he considered pagan) Иоанн II, (Pope from 701 to 705. In his only extant letter, John ordered the restoration of the deposed bishop St. Wilfrid of York) Иоанн VI, (Pope from 705 to 707 who was noted for his devotion to the Virgin Mary and for his energetic restoration of Roman churches) Иоанн VII, (Pope from 898 to 900. His councils made compulsory the presence of an imperial emissary at papal elections) Иоанн IX, (Pope from 914 to 928 who approved the severe rule of the newly founded Benedictine order of Cluny) Иоанн X, (Pope from 931 to about 935, the son of Marozia, dominant lady of the Roman Crescentii family. In 932/933 he was confined by his half-brother Alberic II to the Lateran and remained a prisoner until his death) Иоанн XI, (Pope from 955 to 964 who was elected when he was only about 18 years of age) Иоанн XII, (Pope from 965 to 972. His alliance with the imperial family made his pontificate peaceful) Иоанн XIII, (Pope from 983 to 984. His sole extant document is a letter to Archbishop Alo of Benevento, Italy, concerning church reform) Иоанн XIV, (Pope from July 23, 685, to August 2, 686. A man of learning and generosity, he made liberal donations for the poor) Иоанн V, (Second Avignon Pope - reigned 1316-34 - who centralized church administration, condemned the Spiritual Franciscans, and, against Emperor Louis IV, upheld papal authority over imperial elections) Иоанн XXII, (The fourth Gospel in the NewTestament) Евангелие от Иоанна, (XXIII)(Schismatic antipope from 1410 to 1415) Иоанн (XXIII)
    7) Имена и фамилии: Джон (имя) (100%)

    Универсальный англо-русский словарь > john

  • 4 John (Pope from 955 to 964 who was elected when he was only about 18 years of age)

    Религия: Иоанн XII

    Универсальный англо-русский словарь > John (Pope from 955 to 964 who was elected when he was only about 18 years of age)

  • 5 Elder, John

    [br]
    b. 9 March 1824 Glasgow, Scotland
    d. 17 September 1869 London, England
    [br]
    Scottish engineer who introduced the compound steam engine to ships and established an important shipbuilding company in Glasgow.
    [br]
    John was the third son of David Elder. The father came from a family of millwrights and moved to Glasgow where he worked for the well-known shipbuilding firm of Napier's and was involved with improving marine engines. John was educated at Glasgow High School and then for a while at the Department of Civil Engineering at Glasgow University, where he showed great aptitude for mathematics and drawing. He spent five years as an apprentice under Robert Napier followed by two short periods of activity as a pattern-maker first and then a draughtsman in England. He returned to Scotland in 1849 to become Chief Draughtsman to Napier, but in 1852 he left to become a partner with the Glasgow general engineering company of Randolph Elliott \& Co. Shortly after his induction (at the age of 28), the engineering firm was renamed Randolph Elder \& Co.; in 1868, when the partnership expired, it became known as John Elder \& Co. From the outset Elder, with his partner, Charles Randolph, approached mechanical (especially heat) engineering in a rigorous manner. Their knowledge and understanding of entropy ensured that engine design was not a hit-and-miss affair, but one governed by recognition of the importance of the new kinetic theory of heat and with it a proper understanding of thermodynamic principles, and by systematic development. In this Elder was joined by W.J.M. Rankine, Professor of Civil Engineering and Mechanics at Glasgow University, who helped him develop the compound marine engine. Elder and Randolph built up a series of patents, which guaranteed their company's commercial success and enabled them for a while to be the sole suppliers of compound steam reciprocating machinery. Their first such engine at sea was fitted in 1854 on the SS Brandon for the Limerick Steamship Company; the ship showed an improved performance by using a third less coal, which he was able to reduce still further on later designs.
    Elder developed steam jacketing and recognized that, with higher pressures, triple-expansion types would be even more economical. In 1862 he patented a design of quadruple-expansion engine with reheat between cylinders and advocated the importance of balancing reciprocating parts. The effect of his improvements was to greatly reduce fuel consumption so that long sea voyages became an economic reality.
    His yard soon reached dimensions then unequalled on the Clyde where he employed over 4,000 workers; Elder also was always interested in the social welfare of his labour force. In 1860 the engine shops were moved to the Govan Old Shipyard, and again in 1864 to the Fairfield Shipyard, about 1 mile (1.6 km) west on the south bank of the Clyde. At Fairfield, shipbuilding was commenced, and with the patents for compounding secure, much business was placed for many years by shipowners serving long-distance trades such as South America; the Pacific Steam Navigation Company took up his ideas for their ships. In later years the yard became known as the Fairfield Shipbuilding and Engineering Company Ltd, but it remains today as one of Britain's most efficient shipyards and is known now as Kvaerner Govan Ltd.
    In 1869, at the age of only 45, John Elder was unanimously elected President of the Institution of Engineers and Shipbuilders in Scotland; however, before taking office and giving his eagerly awaited presidential address, he died in London from liver disease. A large multitude attended his funeral and all the engineering shops were silent as his body, which had been brought back from London to Glasgow, was carried to its resting place. In 1857 Elder had married Isabella Ure, and on his death he left her a considerable fortune, which she used generously for Govan, for Glasgow and especially the University. In 1883 she endowed the world's first Chair of Naval Architecture at the University of Glasgow, an act which was reciprocated in 1901 when the University awarded her an LLD on the occasion of its 450th anniversary.
    [br]
    Principal Honours and Distinctions
    President, Institution of Engineers and Shipbuilders in Scotland 1869.
    Further Reading
    Obituary, 1869, Engineer 28.
    1889, The Dictionary of National Biography, London: Smith Elder \& Co. W.J.Macquorn Rankine, 1871, "Sketch of the life of John Elder" Transactions of the
    Institution of Engineers and Shipbuilders in Scotland.
    Maclehose, 1886, Memoirs and Portraits of a Hundred Glasgow Men.
    The Fairfield Shipbuilding and Engineering Works, 1909, London: Offices of Engineering.
    P.M.Walker, 1984, Song of the Clyde, A History of Clyde Shipbuilding, Cambridge: PSL.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge: Cambridge University Press (covers Elder's contribution to the development of steam engines).
    RLH / FMW

    Biographical history of technology > Elder, John

  • 6 Fowler, John

    SUBJECT AREA: Civil engineering
    [br]
    b. 11 July 1826 Melksham, Wiltshire, England
    d. 4 December 1864 Ackworth, Yorkshire, England
    [br]
    English engineer and inventor who developed a steam-powered system of mole land drainage, and a two-engined system of land cultivation, founding the Steam Plough Works in Leeds.
    [br]
    The son of a Quaker merchant, John Fowler entered the business of a county corn merchant on leaving school, but he found this dull and left as soon as he came of age, joining the Middlesbrough company of Gilkes, Wilson \& Hopkins, railway locomotive manufacturers. In 1849, at the age of 23, Fowler visited Ireland and was so distressed by the state of Irish agriculture that he determined to develop a system to deal with the drainage of land. He designed an implement which he patented in 1850 after a period of experimentation. It was able to lay wooden pipes to a depth of two feet, and was awarded the Silver Medal at the 1850 Royal Agriculture Show. By 1854, using a steam engine made by Clayton \& Shuttleworth, he had applied steam power to his invention and gained another award that year at the Royal Show. The following year he turned his attention to steam ploughing. He first developed a single-engined system that used a double windlass with which to haul a plough backwards and forwards across fields. In 1856 he patented his balance plough, and the following year he read a paper to the Institution of Mechanical Engineers at their Birmingham premises, describing the system. In 1858 he won the Royal Agricultural Society award with a plough built for him by Ransomes. Fowler founded the Steam Plough Works in Leeds and in 1862 production began in partnership with William Watson Hewitson. Within two years they were producing the first of a series of engines which were to make the name Fowler known worldwide. John Fowler saw little of his success because he died in 1864 at his Yorkshire home as a result of tetanus contracted after a riding accident.
    [br]
    Further Reading
    M.Lane, 1980, The Story of the Steam Plough Works, Northgate Publishing (provides biographical details of John Fowler, but is mostly concerned with the company that he founded).
    AP

    Biographical history of technology > Fowler, John

  • 7 Metcalf, John

    [br]
    b. 1717 Knaresborough, Yorkshire, England d. 1810
    [br]
    English pioneer road builder.
    [br]
    The son of poor working parents, at the age of 6 an attack of smallpox left him blind; however, this did not restrict his future activities, which included swimming and riding. He learned the violin and was much employed as the fiddle-player at country parties. He saved enough money to buy a horse on which he hunted. He took part in bowls, wrestling and boxing, being a robust six foot two inches tall. He rode to Whitby and went thence by boat to London and made other trips to York, Reading and Windsor. In 1740 Colonel Liddell offered him a seat in his coach from London to Harrogate, but he declined and got there more quickly on foot. He set up a one-horse chaise and a four-wheeler for hire in Harrogate, but the local innkeepers set up in competition in the public hire business. He went into the fish business, buying at the coast and selling in Leeds and other towns, but made little profit so he took up his violin again. During the rebellion of 1745 he recruited for Colonel Thornton and served to fight at Hexham, Newcastle and Falkirk, returning home after the Battle of Culloden. He then started travelling between Yorkshire, where be bought cotton and worsted stockings, and Aberdeen, where he sold horses. He set up a twice-weekly service of stage wagons between Knaresborough and York.
    In 1765 an Act was passed for a turnpike road between Harrogate and Boroughbridge and he offered to build the Master Surveyor, a Mr Ostler, three miles (5 km) of road between Minskip and Fearnly, selling his wagons and his interest in the carrying business. The road was built satisfactorily and on time. He then quoted for a bridge at Boroughbridge and for a turnpike road between Knaresborough and Harrogate. He built many other roads, always doing the survey of the route on his own. The roads crossed bogs on a base of ling and furze. Many of his roads outside Yorkshire were in Lancashire, Cheshire and Derbyshire. In all he built some 180 miles (290 km) of road, for which he was paid some £65,000.
    He worked for thirty years on road building, retiring in old age to a cotton business in Stockport where he had six spinning jennies and a carding engine; however, he found there was little profit in this so he gave the machinery to his son-in-law. The last road he built was from Haslington to Accrington, but due to the rise in labour costs brought about by the demand from the canal boom, he only made £40 profit on a £3,000 contract; the road was completed in 1792, when he retired to his farm at Spofforth at the age of 75. There he died, leaving a wife, four children, twenty grandchildren and ninety greatgrandchildren. His wife was the daughter of the landlord of the Granby Inn, Knaresborough.
    [br]
    Further Reading
    S.Smiles, Lives of the Engineers, Metcalfe, Telford: John Murray.
    IMcN

    Biographical history of technology > Metcalf, John

  • 8 Stevens, John

    [br]
    b. 1749 New York, New York, USA
    d. 6 March 1838 Hoboken, New Jersey, USA
    [br]
    American pioneer of steamboats and railways.
    [br]
    Stevens, a wealthy landowner with an estate at Hoboken on the Hudson River, had his attention drawn to the steamboat of John Fitch in 1786, and thenceforth devoted much of his time and fortune to developing steamboats and mechanical transport. He also had political influence and it was at his instance that Congress in 1790 passed an Act establishing the first patent laws in the USA. The following year Stevens was one of the first recipients of a US patent. This referred to multi-tubular boilers, of both watertube and firetube types, and antedated by many years the work of both Henry Booth and Marc Seguin on the latter.
    A steamboat built in 1798 by John Stevens, Nicholas J.Roosevelt and Stevens's brother-in-law, Robert R.Livingston, in association was unsuccessful, nor was Stevens satisfied with a boat built in 1802 in which a simple rotary steam-en-gine was mounted on the same shaft as a screw propeller. However, although others had experimented earlier with screw propellers, when John Stevens had the Little Juliana built in 1804 he produced the first practical screw steamboat. Steam at 50 psi (3.5 kg/cm2) pressure was supplied by a watertube boiler to a single-cylinder engine which drove two contra-rotating shafts, upon each of which was mounted a screw propeller. This little boat, less than 25 ft (7.6 m) long, was taken backwards and forwards across the Hudson River by two of Stevens's sons, one of whom, R.L. Stevens, was to help his father with many subsequent experiments. The boat, however, was ahead of its time, and steamships were to be driven by paddle wheels until the late 1830s.
    In 1807 John Stevens declined an invitation to join with Robert Fulton and Robert R.Living-ston in their development work, which culminated in successful operation of the PS Clermont that summer; in 1808, however, he launched his own paddle steamer, the Phoenix. But Fulton and Livingston had obtained an effective monopoly of steamer operation on the Hudson and, unable to reach agreement with them, Stevens sent Phoenix to Philadelphia to operate on the Delaware River. The intervening voyage over 150 miles (240 km) of open sea made Phoenix the first ocean-going steamer.
    From about 1810 John Stevens turned his attention to the possibilities of railways. He was at first considered a visionary, but in 1815, at his instance, the New Jersey Assembly created a company to build a railway between the Delaware and Raritan Rivers. It was the first railway charter granted in the USA, although the line it authorized remained unbuilt. To demonstrate the feasibility of the steam locomotive, Stevens built an experimental locomotive in 1825, at the age of 76. With flangeless wheels, guide rollers and rack-and-pinion drive, it ran on a circular track at his Hoboken home; it was the first steam locomotive to be built in America.
    [br]
    Bibliography
    1812, Documents Tending to Prove the Superior Advantages of Rail-ways and Steam-carriages over Canal Navigation.
    He took out patents relating to steam-engines in the USA in 1791, 1803, and 1810, and in England, through his son John Cox Stevens, in 1805.
    Further Reading
    H.P.Spratt, 1958, The Birth of the Steamboat, Charles Griffin (provides technical details of Stevens's boats).
    J.T.Flexner, 1978, Steamboats Come True, Boston: Little, Brown (describes his work in relation to that of other steamboat pioneers).
    J.R.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    Transactions of the Newcomen Society (1927) 7: 114 (discusses tubular boilers).
    J.R.Day and B.G.Wilson, 1957, Unusual Railways, F.Muller (discusses Stevens's locomotive).
    PJGR

    Biographical history of technology > Stevens, John

  • 9 Coster, John

    [br]
    b. c. 1647 Gloucestershire, England
    d. 13 October 1718 Bristol, England
    [br]
    English innovator in the mining, smelting and working of copper.
    [br]
    John Coster, son of an iron-forge manager in the Forest of Dean, by the age of 38 was at Bristol, where he was "chief agent and sharer therein" in the new lead-smelting methods using coal fuel. In 1685 the work, under Sir Clement Clerke, was abandoned because of patent rights claimed by Lord Grandison, who financed of earlier attempts. Clerke's business turned to the coal-fired smelting of copper under Coster, later acknowledged as responsible for the subsequent success through using an improved reverberatory furnace which separated coal fume from the ores being smelted. The new technique, applicable also to lead and tin smelting, revitalized copper production and provided a basis for new British industry in both copper and brass manufacture during the following century. Coster went on to manage a copper-smelting works, and by the 1690s was supplying Esher copper-and brass-works in Surrey from his Redbrook, Gloucestershire, works on the River Wye. In the next decade he extended his activities to Cornish copper mining, buying ore and organizing ore sales, and supplying the four major copper and brass companies which by then had become established. He also made copper goods in additional water-powered rolling and hammer mills acquired in the Bristol area. Coster was ably assisted by three sons; of these, John and Robert were mainly active in Cornwall. In 1714 the younger John, with his father, patented an "engine for drawing water out of deep mines". The eldest son, Thomas, was more involved at Redbrook, in South Wales and the Bristol area. A few years after the death of his father, Thomas became partner in the brass company of Bristol and sold them the Redbrook site. He became Member of Parliament for Bristol and, by then the only surviving son, planned a large new smelting works at White Rock, Swansea, South Wales, before his death in 1734. Partners outside the family continued the business under a new name.
    [br]
    Bibliography
    1714, British patent 397, with John Coster Jr.
    Further Reading
    Rhys Jenkins, 1942, "Copper works at Redbrook and Bristol", Transactions of the Bristol and Gloucestershire Archaeological Society 63.
    Joan Day, 1974–6, "The Costers: copper smelters and manufacturers", Transactions of the Newcomen Society 47:47–58.
    JD

    Biographical history of technology > Coster, John

  • 10 Holtzapffel, John Jacob

    [br]
    b. June 1836 London, England
    d. 14 October 1897 Eastbourne, Sussex, England
    [br]
    English mechanical engineer and author of several volumes of Turning and Mechanical Manipulation.
    [br]
    John Jacob Holtzapffel was the second son of Charles Holtzapffel and was educated at King's College School, London, and at Cromwell House, Highgate. Following the death of his father in 1847 and of his elder brother, Charles, at the age of 10, he was called on at an early age to take part in the business of lathe-making and turning founded by his grandfather. He made many improvements to the lathe for ornamental turning, but he is now remembered chiefly for the continuation of his father's publication Turning and Mechanical Manipulation. J.J. Holtzapffel produced the fourth volume, on Plain Turning, in 1879, and the fifth, on Ornamental Turning, in 1884. In 1894 he revised and enlarged the third volume, but the intended sixth volume was never completed. J.J.Holtzapffel was admitted to the Turners' Company of London in 1862 and became Master in 1879. He was associated with the establishment of the Turners' Competition to encourage the art of turning and was one of the judges for many years. He was also an examiner for the City and Guilds of London Institute and the British Horological Institute. He was a member of the Society of Arts and a corresponding member of the Franklin Institute of Philadelphia. He was elected an Associate of the Institution of Civil Engineers in 1863 and became an Associate Member after reorganization of the classes of membership in 1878.
    [br]
    Principal Honours and Distinctions
    Master, Turners' Company of London 1879.
    Bibliography
    1879, Turning and Mechanical Manipulation, Vol. IV: Plain Turning, London; 1884, Vol. V: The Principles and Practice of Ornamental or Complex Turning, London; reprinted 1894; reprinted 1973, New York.
    RTS

    Biographical history of technology > Holtzapffel, John Jacob

  • 11 Ramsbottom, John

    [br]
    b. 11 September 1814 Todmorden, Lancashire, England
    d. 20 May 1897 Alderley Edge, Cheshire, England
    [br]
    English railway engineer, inventor of the reversing rolling mill.
    [br]
    Ramsbottom's initial experience was gained at the locomotive manufacturers Sharp, Roberts \& Co. At the age of 28 he was Manager of the Longsight works of the Manchester \& Birmingham Railway, which, with other lines, became part of the London \& North Western Railway (L \& NWR) in 1846. Ramsbottom was appointed Locomotive Superintendent of its north-eastern division. Soon after 1850 came his first major invention, that of the split-ring piston, consisting of castiron rings fitted round the piston to ensure a steam-tight fit in the cylinder. This proved to be successful, with a worldwide application. In 1856 he introduced sight-feed lubrication and the form of safety valve that bears his name. In 1857 he became Locomotive Superintendent of the L \& NWR at Crewe, producing two notable classes of locomotives: 2–4–0s for passenger traffic; and 0–6–0s for goods. They were of straightforward design and robust construction, and ran successfully for many years. His most spectacular railway invention was the water trough between the rails which enabled locomotives to replenish their water tanks without stopping.
    As part of his policy of making Crewe works as independent as possible, Ramsbottom made several metallurgical innovations. He installed one of the earliest Bessemer converters for steelmaking. More important, in 1866 he coupled the engine part of a railway engine to a two-high rolling mill so that the rolls could be run in either direction, and quickly change direction, by means of the standard railway link reversing gear. This greatly speeded up the rolling of iron or steel into the required sections. He eventually retired in 1871.
    [br]
    Further Reading
    J.N.Weatwood, 1977, Locomotive Designers in the Age of Steam, London: Sidgwick \& Jackson, pp. 43–7.
    W.K.V.Gale, 1969, Iron and Steel, London: Longmans, p. 80 (provides brief details of his reversing mill).
    F.C.Hammerton, 1937, John Ramsbottom, the Father of the Modern Locomotive,
    London.
    LRD

    Biographical history of technology > Ramsbottom, John

  • 12 Ericsson, John

    [br]
    b. 31 July 1803 Farnebo, Sweden
    d. 8 March 1899 New York, USA
    [br]
    Swedish (naturalized American 1848) engineer and inventor.
    [br]
    The son of a mine owner and inspector, Ericsson's first education was private and haphazard. War with Russia disrupted the mines and the father secured a position on the Gotha Canal, then under construction. He enrolled John, then aged 13, and another son as cadets in a corps of military engineers engaged on the canal. There John was given a sound education and training in the physical sciences and engineering. At the age of 17 he decided to enlist in the Army, and on receiving a commission he was drafted to cartographic survey duties. After some years he decided that a career outside the Army offered him the best opportunities, and in 1826 he moved to London to pursue a career of mechanical invention.
    Ericsson first developed a heat (external combustion) engine, which proved unsuccessful. Three years later he designed and constructed the steam locomotive Novelty, which he entered in the Rainhill locomotive trials on the new Liverpool \& Manchester Railway. The engine began by performing promisingly, but it later broke down and failed to complete the test runs. Later he devised a self-regulating lead (1835) and then, more important and successful, he invented the screw propeller, patented in 1835 and installed in his first screw-propelled ship of 1839. This work was carried out independently of Sir Francis Pettit Smith, who contemporaneously developed a four-bladed propeller that was adopted by the British Admiralty. Ericsson saw that with screw propulsion the engine could be below the waterline, a distinct advantage in warships. He crossed the Atlantic to interest the American government in his ideas and became a naturalized citizen in 1848. He pioneered the gun turret for mounting heavy guns on board ship. Ericsson came into his own during the American Civil War, with the construction of the epoch-making warship Monitor, a screw-propelled ironclad with gun turret. This vessel demonstrated its powers in a signal victory at Hampton Roads on 9 March 1862.
    Ericsson continued to design warships and torpedoes, pointing out to President Lincoln that success in war would now depend on technological rather than numerical superiority. Meanwhile he continued to pursue his interest in heat engines, and from 1870 to 1888 he spent much of his time and resources in pursuing research into alternative energy sources, such as solar power, gravitation and tidal forces.
    [br]
    Further Reading
    W.C.Church, 1891, Life of John Ericsson, 2 vols, London.
    LRD

    Biographical history of technology > Ericsson, John

  • 13 Hopkinson, John

    [br]
    b. 27 July 1849 Manchester, England
    d. 27 August 1898 Petite Dent de Veisivi, Switzerland
    [br]
    English mathematician and electrical engineer who laid the foundations of electrical machine design.
    [br]
    After attending Owens College, Manchester, Hopkinson was admitted to Trinity College, Cambridge, in 1867 to read for the Mathematical Tripos. An appointment in 1872 with the lighthouse department of the Chance Optical Works in Birmingham directed his attention to electrical engineering. His most noteworthy contribution to lighthouse engineering was an optical system to produce flashing lights that distinguished between individual beacons. His extensive researches on the dielectric properties of glass were recognized when he was elected to a Fellowship of the Royal Society at the age of 29. Moving to London in 1877 he became established as a consulting engineer at a time when electricity supply was about to begin on a commercial scale. During the remainder of his life, Hopkinson's researches resulted in fundamental contributions to electrical engineering practice, dynamo design and alternating current machine theory. In making a critical study of the Edison dynamo he developed the principle of the magnetic circuit, a concept also arrived at by Gisbert Kapp around the same time. Hopkinson's improvement of the Edison dynamo by reducing the length of the field magnets almost doubled its output. In 1890, in addition to-his consulting practice, Hopkinson accepted a post as the first Professor of Electrical Engineering and Head of the Siemens laboratory recently established at King's College, London. Although he was not involved in lecturing, the position gave him the necessary facilities and staff and student assistance to continue his researches. Hopkinson was consulted on many proposals for electric traction and electricity supply, including schemes in London, Manchester, Liverpool and Leeds. He also advised Mather and Platt when they were acting as contractors for the locomotives and generating plant for the City and South London tube railway. As early as 1882 he considered that an ideal method of charging for the supply of electricity should be based on a two-part tariff, with a charge related to maximum demand together with a charge for energy supplied. Hopkinson was one the foremost expert witnesses of his day in patent actions and was himself the patentee of over forty inventions, of which the three-wire system of distribution and the series-parallel connection of traction motors were his most successful. Jointly with his brother Edward, John Hopkinson communicated the outcome of his investigations to the Royal Society in a paper entitled "Dynamo Electric Machinery" in 1886. In this he also described the later widely used "back to back" test for determining the characteristics of two identical machines. His interest in electrical machines led him to more fundamental research on magnetic materials, including the phenomenon of recalescence and the disappearance of magnetism at a well-defined temperature. For his work on the magnetic properties of iron, in 1890 he was awarded the Royal Society Royal Medal. He was a member of the Alpine Club and a pioneer of rock climbing in Britain; he died, together with three of his children, in a climbing accident.
    [br]
    Principal Honours and Distinctions
    FRS 1878. Royal Society Royal Medal 1890. President, Institution of Electrical Engineers 1890 and 1896.
    Bibliography
    7 July 1881, British patent no. 2,989 (series-parallel control of traction motors). 27 July 1882, British patent no. 3,576 (three-wire distribution).
    1901, Original Papers by the Late J.Hopkinson, with a Memoir, ed. B.Hopkinson, 2 vols, Cambridge.
    Further Reading
    J.Greig, 1970, John Hopkinson Electrical Engineer, London: Science Museum and HMSO (an authoritative account).
    —1950, "John Hopkinson 1849–1898", Engineering 169:34–7, 62–4.
    GW

    Biographical history of technology > Hopkinson, John

  • 14 Titt, John Wallis

    [br]
    b. 1841 Cheriton, Wiltshire, England
    d. May 1910 Warminster, Wiltshire, England
    [br]
    English agricultural engineer and millwright who developed a particular form of wind engine.
    [br]
    John Wallis Titt grew up on a farm which had a working post-mill, but at 24 years of age he joined the firm of Wallis, Haslam \& Stevens, agricultural engineers and steam engine builders in Basingstoke. From there he went to the millwrighting firm of Brown \& May of Devizes, where he worked for five years.
    In 1872 he founded his own firm in Warminster, where his principal work as an agricultural engineer was on hay and straw elevators. In 1876 he moved his firm to the Woodcock Ironworks, also in Warminster. There he carried on his work as an agricultural engineer, but he also had an iron foundry. By 1884 the firm was installing water pumps on estates around Warminster, and it was about that time that he built his first wind engines. Between 1884 and 1903, when illness forced his retirement, his wind engines were built primarily with adjustable sails. These wind engines, under the trade marks "Woodcock" and "Simplex", consisted of a lattice tower with the sails mounted on a a ring at the top. The sails were turned to face the wind by means of a fantail geared to the ring or by a wooden vane. The important feature lay in the sails, which were made of canvas on a wood-and-iron frame mounted in a ring. The ends of the sail frames were hinged to the sail circumferences. In the middle of the sail a circular strap was attached so that all the frames had the same aspect for a given setting of the bar. The importance lies in the adjustable sails, which gave the wind engine the ability to work in variable winds.
    Whilst this was not an original patent of John Wallis Titt, he is known to be the only maker of wind engines in Britain who built his business on this highly efficient form of sail. In design terms it derives from the annular sails of the conventional windmills at Haverhill in Suffolk and Roxwell in Essex. After his retirement, his sons reverted to the production of the fixed-bladed galvanized-iron wind engine.
    [br]
    Further Reading
    J.K.Major, 1977, The Windmills of John Wallis Titt, The International Molinological Society.
    E.Lancaster Burne, 1906, "Wind power", Cassier' Magazine 30:325–6.
    KM

    Biographical history of technology > Titt, John Wallis

  • 15 Voelcker, John Christopher

    [br]
    b. 24 September 1822 Frankfurt am Main, Germany
    d. 5 December 1884 England
    [br]
    German analytical chemist resident in England whose reports on feedstuffs and fertilizers had a considerable influence on the quality of these products.
    [br]
    The son of a merchant in the city of his birth, John Christopher had delicate health and required private tuition to overcome the loss of his early years of schooling. At the age of 22 he went to study chemistry at Göttingen University and then worked for a short time for Liebig at Giessen. In 1847 he obtained a post as Analyst and Consulting Chemist at the Agricultural Chemistry Association of Scotland's Edinburgh office, and two years later he became Professor of Chemistry at the Royal Agricultural College in Cirencester, retaining this post until 1862. In 1855 he was appointed Chemist to the Bath and West Agricultural Society, and in that capacity organized lectures and field trials, and in 1857 he also became Consulting Chemist to the Royal Agricultural Society of England. Initially he studied the properties of farmyard manure and also the capacity of the soil to absorb ammonia, potash and sodium. As Consulting Chemist to farmers he analysed feedstuffs and manures; his assessments of artificial manures did much to force improvements in standards. During the 1860s he worked on milk and dairy products. He published the results of his work each year in the Journal of the Royal Agricultural Society of England. In 1877 he became involved in the field trials initiated and funded by the Duke of Bedford on his Woburn farm, and he continued his association with this venture until his death.
    [br]
    Principal Honours and Distinctions
    FRS. Founder and Vice-President, Institute of Chemistry of Great Britain and Northern Ireland 1877. Member Chemical Society 1849; he was a member of Council as well as its Vice-President at the time of his death. Member of the Board of Studies, Royal Agricultural College, Cirencester; Honorary Professor from 1882.
    Bibliography
    His papers are to be found in the Journal of the Royal Agricultural Society of England, for which he began to write reports in 1855, and also in the Journal of the Bath and West Society.
    Further Reading
    J.H.Gilbert, 1844, obituary, Journal of the Royal Agricultural Society of England, pp. 308–21 (a detailed account).
    Sir E.John Russell, A History of Agricultural Science in Great Britain.
    AP

    Biographical history of technology > Voelcker, John Christopher

  • 16 Wilkinson, John

    SUBJECT AREA: Weapons and armour
    [br]
    b. 1728 Clifton, Cumberland, England
    d. 14 July 1808 Bradley, Staffordshire, England
    [br]
    English ironmaster, inventor of a cannon-boring machine.
    [br]
    Wilkinson's father Isaac was a farmer turned ironmaster. Soon after 1750, the family acquired Bersham furnace, near Wrexham. This was later in the hands of John and his brother William. By 1763, John had risen to take sole charge of Broseley furnace near Coalbrookdale, Shropshire, and in 1770 he set up a third furnace at Bradley, Staffordshire. By this time he had become one of the country's leading ironmasters, known for the wide range of ware made of cast iron, doubtless the reason for his nickname "Ironmad Wilkinson". He made a cast-iron boat which, to the surprise of many, floated. For his own eventual use, he also made a cast-iron coffin, but did not make sufficient allowance for increasing girth with age! Wilkinson's most notable invention was his cannon-boring machine, patented in 1774. The gun barrel was held rigidly while the cutter head moved forward on a rod inside a hollow boring bar. The machine was easily adapted to bore the cylinders for Boulton \& Watt's steam engines and he became a regular supplier, as only he could bore them with the required accuracy. On the other hand, their second engine was supplied to Wilkinson to power a blowing engine to provide air blast for his Broseley furnace: this was the first use of a Boulton \& Watt engine for a purpose other than pumping. By 1780 he had three further steam engines at work. Wilkinson installed the first Boulton \& Watt engine in France at the Paris waterworks, for which he supplied the iron pipes. Another patent was obtained in 1794 for the invention of the cupola or furnace for melting metal for small castings, although it is now thought that the real inventor was his brother William. Apart from domestic and engineering ironware, Wilkinson was supplier of arms to the American and, illicitly, to the French.
    [br]
    Further Reading
    H.W.Dickinson, 1914, John Wilkinson, Iron-master.
    LRD

    Biographical history of technology > Wilkinson, John

  • 17 Napier (Neper), John

    [br]
    b. 1550 Merchiston Castle, Edinburgh, Scotland
    d. 4 April 1617 Merchiston Castle, Edinburgh, Scotland
    [br]
    Scottish mathematician and theological writer noted for his discovery of logarithms, a powerful aid to mathematical calculations.
    [br]
    Born into a family of Scottish landowners, at the early age of 13 years Napier went to the University of St Andrews in Fife, but he apparently left before taking his degree. An extreme Protestant, he was active in the struggles with the Roman Catholic Church and in 1594 he dedicated to James VI of Scotland his Plaine Discovery of the Whole Revelation of St John, an attempt to promote the Protestant case in the guise of a learned study. About this time, as well as being involved in the development of military equipment, he devoted much of his time to finding methods of simplifying the tedious calculations involved in astronomy. Eventually he realized that by representing numbers in terms of the power to which a "base" number needed to be raised to produce them, it was possible to perform multiplication and division and to find roots, by the simpler processes of addition, substraction and integer division, respectively.
    A description of the principle of his "logarithms" (from the Gk. logos, reckoning, and arithmos, number), how he arrived at the idea and how they could be used was published in 1614 under the title Mirifici Logarithmorum Canonis Descriptio. Two years after his death his Mirifici Logarithmorum Canonis Constructio appeared, in which he explained how to calculate the logarithms of numbers and gave tables of them to eight significant figures, a novel feature being the use of the decimal point to distinguish the integral and fractional parts of the logarithm. As originally conceived, Napier's tables of logarithms were calculated using the natural number e(=2.71828…) as the base, not directly, but in effect according to the formula: Naperian logx= 107(log e 107-log e x) so that the original Naperian logarithm of a number decreased as the number increased. However, prior to his death he had readily acceded to a suggestion by Henry Briggs that it would greatly facilitate their use if logarithms were simply defined as the value to which the decimal base 10 needed to be raised to realize the number in question. He was almost certainly also aware of the work of Joost Burgi.
    No doubt as an extension of his ideas of logarithms, Napier also devised a means of manually performing multiplication and division by means of a system of rods known as Napier's Bones, a forerunner of the modern slide-rule, which evolved as a result of successive developments by Edmund Gunther, William Oughtred and others. Other contributions to mathematics by Napier include important simplifying discoveries in spherical trigonometry. However, his discovery of logarithms was undoubtedly his greatest achievement.
    [br]
    Bibliography
    Napier's "Descriptio" and his "Constructio" were published in English translation as Description of the Marvelous Canon of Logarithms (1857) and W.R.MacDonald's Construction of the Marvelous Canon of Logarithms (1889), which also catalogues all his works. His Rabdologiae, seu Numerationis per Virgulas Libri Duo (1617) was published in English as Divining Rods, or Two Books of Numbering by Means of Rods (1667).
    Further Reading
    D.Stewart and W.Minto, 1787, An Account of the Life Writings and Inventions of John Napier of Merchiston (an early account of Napier's work).
    C.G.Knott (ed.), 1915, Napier Tercentenary Memorial Volume (the fullest account of Napier's work).
    KF

    Biographical history of technology > Napier (Neper), John

  • 18 Bateman, John Frederick La Trobe

    [br]
    b. 30 May 1810 Lower Wyke, near Halifax, Yorkshire, England
    d. 10 June 1889 Moor Park, Farnham, Surrey, England
    [br]
    English civil engineer whose principal works were concerned with reservoirs, water-supply schemes and pipelines.
    [br]
    Bateman's maternal grandfather was a Moravian missionary, and from the age of 7 he was educated at the Moravian schools at Fairfield and Ockbrook. At the age of 15 he was apprenticed to a "civil engineer, land surveyor and agent" in Oldham. After this apprenticeship, Bateman commenced his own practice in 1833. One of his early schemes and reports was in regard to the flooding of the river Medlock in the Manchester area. He came to the attention of William Fairbairn, the engine builder and millwright of Canal Street, Ancoats, Manchester. Fairbairn used Bateman as his site surveyor and as such he prepared much of the groundwork for the Bann reservoirs in Northern Ireland. Whilst the reports on the proposals were in the name of Fairbairn, Bateman was, in fact, appointed by the company as their engineer for the execution of the works. One scheme of Bateman's which was carried forward was the Kendal Reservoirs. The Act for these was signed in 1845 and was implemented not for the purpose of water supply but for the conservation of water to supply power to the many mills which stood on the river Kent between Kentmere and Morecambe Bay. The Kentmere Head dam is the only one of the five proposed for the scheme to survive, although not all the others were built as they would have retained only small volumes of water.
    Perhaps the greatest monument to the work of J.F.La Trobe Bateman is Manchester's water supply; he was consulted about this in 1844, and construction began four years later. He first built reservoirs in the Longdendale valley, which has a very complicated geological stratification. Bateman favoured earth embankment dams and gravity feed rather than pumping; the five reservoirs in the valley that impound the river Etherow were complex, cored earth dams. However, when completed they were greatly at risk from landslips and ground movement. Later dams were inserted by Bateman to prevent water loss should the older dams fail. The scheme was not completed until 1877, by which time Manchester's population had exceeded the capacity of the original scheme; Thirlmere in Cumbria was chosen by Manchester Corporation as the site of the first of the Lake District water-supply schemes. Bateman, as Consulting Engineer, designed the great stone-faced dam at the west end of the lake, the "gothic" straining well in the middle of the east shore of the lake, and the 100-mile (160 km) pipeline to Manchester. The Act for the Thirlmere reservoir was signed in 1879 and, whilst Bateman continued as Consulting Engineer, the work was supervised by G.H. Hill and was completed in 1894.
    Bateman was also consulted by the authorities in Glasgow, with the result that he constructed an impressive water-supply scheme derived from Loch Katrine during the years 1856–60. It was claimed that the scheme bore comparison with "the most extensive aqueducts in the world, not excluding those of ancient Rome". Bateman went on to superintend the waterworks of many cities, mainly in the north of England but also in Dublin and Belfast. In 1865 he published a pamphlet, On the Supply of Water to London from the Sources of the River Severn, based on a survey funded from his own pocket; a Royal Commission examined various schemes but favoured Bateman's.
    Bateman was also responsible for harbour and dock works, notably on the rivers Clyde and Shannon, and also for a number of important water-supply works on the Continent of Europe and beyond. Dams and the associated reservoirs were the principal work of J.F.La Trobe Bateman; he completed forty-three such schemes during his professional career. He also prepared many studies of water-supply schemes, and appeared as professional witness before the appropriate Parliamentary Committees.
    [br]
    Principal Honours and Distinctions
    FRS 1860. President, Institution of Civil Engineers 1878, 1879.
    Bibliography
    Among his publications History and Description of the Manchester Waterworks, (1884, London), and The Present State of Our Knowledge on the Supply of Water to Towns, (1855, London: British Association for the Advancement of Science) are notable.
    Further Reading
    Obituary, 1889, Proceedings of the Royal Society 46:xlii-xlviii. G.M.Binnie, 1981, Early Victorian Water Engineers, London.
    P.N.Wilson, 1973, "Kendal reservoirs", Transactions of the Cumberland and Westmorland Antiquarian and Archaeological Society 73.
    KM / LRD

    Biographical history of technology > Bateman, John Frederick La Trobe

  • 19 Floyer, Sir John

    SUBJECT AREA: Medical technology
    [br]
    b. 3 March 1649 Hints, Warwickshire, England
    d. 1734 Lichfield, Staffordshire, England
    [br]
    English physician, pioneer in the measurement of pulse and respiration rate.
    [br]
    The younger son of a landed Midlands family, Floyer embarked on medical studies at Oxford at the age of 15 and graduated in 1674. He returned to Lichfield where he resided and practised, as well as being acquainted with the family of Samuel Johnson, for the remainder of a long life. Described by a later biographer as "fantastic, whimsical, pretentious, research-minded and nebulous", he none the less, as his various medical writings testify, became a pioneer in several fields of medical endeavour. It seems likely that he was well aware of the teachings of Sanctorius in relation to measurement in medicine and he probably had a copy of Sanctorius's weighing-machine made and put to use in Lichfield.
    He also embarked on extensive studies relating to pulse, respiration rate, temperature, barometric readings and even latitude. Initially he used the minute hand of a pendulum clock or a navigational minute glass. He then commissioned from Samuel Watson, a London watch-and clockmaker, a physicians' pulse watch incorporating a second-hand and a stop mechanism. In 1707 and 1710 he published a massive work, dedicated to Queen Anne, that emphasized the value of the accurate measurement of pulse rates in health and disease.
    His other interests included studies of blood pressure, asthma, and the medical value of cold bathing. It is of interest that it was at his suggestion that the young Samuel Johnson was taken to London to receive the Royal Touch, from Queen Anne, for scrofula.
    [br]
    Principal Honours and Distinctions
    Knighted 1686.
    Bibliography
    1707–10, The Physicians Pulse Watch, 2 vols, London.
    Further Reading
    D.D.Gibb, 1969, 'Sir John Floyer, M.D. (1649–1734), British Medical Journal.
    MG

    Biographical history of technology > Floyer, Sir John

  • 20 Goucher, John

    [br]
    b. c.1831 Woodsetts, Yorkshire, England
    d. unknown
    [br]
    English engineer and inventor of the rubbing bars used on threshing machines and combine harvesters.
    [br]
    John Goucher was the son of a Yorkshire farmer who began his employed life as a carpenter. In 1851, at the age of 20, he was living on the farm of his father and employing four labourers. He developed and patented a means of wrapping wire around the individual bars of a threshing machine drum in such a way that grooves were formed in them. These grooves allowed the threshed grain to pass through without being crushed or otherwise damaged.
    [br]
    Bibliography
    Other patents credited to him range from devices for the propelling of ships in 1854, beaters for threshing machines in 1848, 1856, and again in 1861, stacking corn and other crops in the same year, improvements to steam boilers in 1863, for preserving life in water in 1867, threshing machines in 1873 and 1874, steam engines in 1884, and threshing machines in 1885.
    AP

    Biographical history of technology > Goucher, John

См. также в других словарях:

  • John Charles — Pas d image ? Cliquez ici. Biographie Nom William …   Wikipédia en Français

  • John Wesley Van Dyke — (1849 1939) was president of the Atlantic Refining Company, Philadelphia, Pennsylvania, from 1911 until 1927. After the break up of Standard Oil Trust, Van Dyke led the debt ridden Atlantic Refining Company into expanded markets and sales of more …   Wikipedia

  • John Farnham — AO (* 1. Juli 1949 in Dagenham, Essex, England) ist ein australischer Sänger. Während er international nur einen mäßigen Bekanntheitsgrad besitzt, ist er in seinem Heimatland seit Jahrzehnten einer der bekanntesten Musiker. Mit dem Stück You’re… …   Deutsch Wikipedia

  • John & Thomas Johnson — was a soap and alkali manufacturing business in Runcorn, Cheshire, England during the 19th century.John and Thomas Johnson were brothers after whom the business was named. Their father, also named John Johnson, had established a soapery on the… …   Wikipedia

  • John Black — may refer to: Real people: *John Black (judge) (1817 1879), Canadian *John Black (composer) (ca. 1520 1587), Scotland *John Black (U.S. Senator) (c.1780 1854), Mississippi *John C. Black (1839 1915), U.S. Congressman and soldier *John McConnell… …   Wikipedia

  • John William Noga — (December 10, 1903 in Richwood, West Virginia – October 13, 1997 in Manchester, New Hampshire) was a U.S. author and illustrator of wildlife, fishing, hunting, trapping, camping, boating, boating safety and outdoor adventure. He is best known for …   Wikipedia

  • John Brown & Company — John Brown and Company of Clydebank, West Dunbartonshire, Scotland, was a pre eminent shipbuilder, responsible for building many notable ships.OriginsThe shipyard was founded by the James and George Thomson, brothers who had worked for the famous …   Wikipedia

  • John Pule — John Puhiatau Pule (Liku, Niue, 1962[1] [2] ) artista y escritor niuano.[3] Pule vive y trabaja en Auckland, Nueva Zelanda, escribe poesía y novelas y su arte incluye desd …   Wikipedia Español

  • John Pule — John Puhiatau Pule (Liku, Niue, 1962[1],[2]) est un artiste et écrivain niuéen[3]. Pule habite et travaille à Auckland, en Nouvelle Zélande, il éc …   Wikipédia en Français

  • John Ambrose Street — (September 22 1795 ndash; May 5 1865) was a lawyer and political figure in New Brunswick. He represented Northumberland County in the Legislative Assembly of New Brunswick from 1833 to 1842 and from 1843 to 1856.He was born in Burton, New… …   Wikipedia

  • John II of France — Infobox French Royalty|monarch name=John II the Good title=King of France caption=Portrait of John painted on wood panel around 1350, Louvre Museum reign=22 August 1350 ndash; 8 April 1364 coronation=26 September 1350, predecessor=Philip VI… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»